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Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from
deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we
found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize
(Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant
associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase
(TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with
longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in
A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results
point to several possible reasons for this correlation, including the possibility that longer telomeres may be more
adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal
structure itself might be an adaptive trait associated with plant life-history strategies.

Introduction
Telomeres are regions of repetitive sequences that cap
the ends of eukaryotic chromosomes to protect them from
deterioration and from eliciting a DNA damage response

(Shay and Wright, 2019). During DNA replication, failure to
fill in terminal base pairs at the lagging strand leads to the
end-replication problem (Olovnikov, 1971, 1973; Watson,
1972), resulting in the shortening of chromosome ends
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during each cell division and the eventual loss of replicative
capacity (Hayflick and Moorhead, 1961; van Deursen, 2014).
To prevent this loss of chromosomal DNA at the termini,
the ribonucleoprotein enzyme complex telomerase, whose
core components consist of a telomerase reverse transcrip-
tase (TERT) and RNA template (TR; Osterhage and
Friedman, 2009; Song et al., 2019), binds to single-stranded
telomeric DNA at the 30-end and processively extends
the telomere sequence (Wu et al., 2017). Other specialized
telomere binding proteins are also recruited to prevent
the telomere from being detected as damaged DNA
(Fulcher et al., 2014).

Eukaryotic telomeres consist of a tandem repeat of TG-
rich microsatellite sequences (Podlevsky and Chen, 2016).
The core telomeric repeat sequence is conserved among
species. For instance, vertebrates have the telomeric repeat
TTAGGG (Meyne et al., 1989), while in most plants, the
sequence is TTTAGGG (Fajkus et al., 2005). The most
noticeable difference in telomeres between organisms is
differences in telomere length, which can be as short as
300 bps in yeast (Saccharomyces cerevisiae; Gatbonton et al.,
2006) and up to 150 kb in tobacco (Nicotiana tabacum;
Fajkus et al., 1995). Within species, telomere sequences also
display substantial heritable length variation. Several exam-
ples of telomere length polymorphisms and the underlying
genes responsible for this variation have been identified in
humans (Homo sapiens), yeast, and the roundworm
Caenorhabditis elegans (Liti et al., 2009; Levy et al., 2010;
Jones et al., 2012; Codd et al., 2013; Cook et al., 2016).
In plants, variation in telomere length has also been
observed between individuals (Burr et al., 1992; Shakirov and

Shippen, 2004; Maillet et al., 2006; Fulcher et al., 2015), be-
tween organs (Kilian et al., 1995), and between cell types
(González-Garcı́a et al., 2015). Quantitative trait locus (QTL)
studies in Arabidopsis thaliana and maize (Zea mays) have
indicated that natural variation in telomere length is a heri-
table complex trait (Burr et al., 1992; Brown et al., 2011;
Fulcher et al., 2015). In Arabidopsis, a recent QTL analysis
using MAGIC lines suggested that genes involved in ribo-
some biogenesis and cell proliferation, such as NOP2A,
RPL5A, and RPL5B, may be involved in setting telomere
length set points (Abdulkina et al., 2019).

A more puzzling question is this: What is the significance
of natural variation in telomere length for organisms?
Telomere length variation could be neutral and result from
random genetic drift or random stochasticity in the activity
of the telomerase. Alternatively, telomere length differences
could have fitness effects that are subject to natural
selection, possibly due to their association with cellular
senescence, which has been implicated in controlling life-
span in yeast and animals (Aubert and Lansdorp, 2008;
Kupiec, 2014). In mammals, for example, telomere shorten-
ing correlates with between-species differences in lifespan
(Whittemore et al., 2019), suggesting that telomeres are in-
volved in the aging process (Aubert and Lansdorp, 2008).
Indeed, it has been suggested that the aging trajectory of
telomere lengths could be a product of optimization of a
life-history tradeoff (Young, 2018). This is by no means uni-
versal, as in C. elegans, no fitness differences or clear pheno-
typic consequences were associated with natural variation in
telomere lengths (Cook et al., 2016). A recent hypothesis
proposes that shorter telomeres are associated with a faster

IN A NUTSHELL
Background: Telomeres are DNA-protein complexes found at the ends of eukaryotic chromosomes that protect the 
genome from instability and damage. In humans, telomeres shorten each time a cell divides, and accelerated 
telomere shortening leads to aging-associated diseases. In both plants and animals, telomere lengths often vary not 
only between but also within species. Such telomere length variation is associated with differences in life span or 
aging in animals, but the functional importance of natural telomere length variation in plants remains unclear.

Question: What is the biological significance of carrying different telomere lengths for natural plant populations? We 
asked this question in three model plant species: Arabidopsis thaliana, (Asian rice) Oryza sativa, and maize (Zea 
mays).

Findings: In all three plant species, we discovered that individuals with longer telomeres flowered significantly faster 
than those with shorter telomeres. Through genome-wide association mapping (GWAS), we identified several 
candidate genomic regions underlying natural telomere length variation, including a region harboring the telomerase 
reverse transcriptase (TERT) gene. We also discovered associations of telomere length 
geographic origin, suggesting that plants from temperate climates have the longest telomeres. Our data indicate that 
longer telomeres may be more adaptive in plants that have faster developmental rates and therefore flower earlier. 
Overall, our discovery of the association of flowering time with telomere length across the three evolutionarily different 
plant lineages suggests that this response may be a universal phenomenon across the plant kingdom and implies
that telomere length variation in plants correlates with different life strategies and adaptations in response to the
environment.

Next steps: The main open question is how telomere length variation mechanistically leads to changes in plant 
flowering time. Future genetic experiments will test whether telomere length affects flowering time directly or 
indirectly. 
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“pace of life” in some organisms, in which energy is
conserved for reproduction and away from somatic mainte-
nance (Giraudeau et al., 2019).

While there is interest in the links between telomeres and
life-history traits (e.g. aging) in animals, relatively little is
known about how telomere length evolution affects plant
life-history strategies. Aging in plants differs fundamentally
from that in animals (Watson and Riha, 2011), and it is
unclear whether the telomere-aging and “pace-of-life”
models are also applicable to plants. Indeed, no specific
hypotheses have been put forth to explain natural telomere
length variation in plants; whether telomeres have an
effect on plant life-history traits and are a target of natural
selection remains an open question.

Here we describe an association between a life-history
trait—flowering time—and natural telomere length variation
in plants. Using whole-genome sequence data as well as ex-
perimental assays, we determine the extent of telomere
length variation in three plant species: A. thaliana, rice
(Oryza sativa), and maize (Z. mays). We use a genome-wide
association (GWAS) mapping to identify genomic regions
associated with natural telomere length variation in
A. thaliana, including one that spans the telomerase gene
TERT. We show that longer telomeres are found in plants
that flower earlier in these three annual plant species.

Results

Genome-wide variation in A. thaliana tandem
repeats
Satellite DNA sequences are repetitive sequences structured
as arrays of DNA that are tandemly repeated in the genome,
sometimes up to 106 copies. We examined genome-wide
variation in satellite DNA repeat copy number in A. thaliana
using the program k-Seek (Wei et al., 2014, 2018). k-Seek is
an assembly-free method of identifying and quantifying
k-mer repeats in unmapped short read sequence data, and
k-mer counts are highly correlated with direct measure-
ments of satellite repeat abundance (Wei et al., 2014).

We used whole-genome re-sequencing data from
the 1001 A. thaliana Genome Consortium Project (Alonso-
Blanco et al., 2016). We quantified genome-wide A. thaliana
tandem repeat copy numbers by focusing on 483 individuals
that were sequenced from leaves using identical protocols
(designated as AraThaKmer; see Methods section for details).
The quantity of each k-mer sequence is presented as copies
per 1� read depth after GC normalization (Flynn et al.,
2017). We set 50 bps as the minimum length of tandem re-
peat sequences that can be called.

Adding up k-mer copy numbers, the median total length
of tandem repeats per individual is estimated at 341 kb.
Across the population, individuals displayed over 25-fold
differences in total tandem repeat lengths. The most
abundant k-mer was the poly-A repeat, followed by the
7-mer AAACCCT (Figure 1A). Some k-mers, such as the AC
repeat, had a wide range of variation between individuals,
with a range of zero to thousands of copies. Our

computationally based estimates were qualitatively concor-
dant with direct estimates of repeat copy number that used
DNA gel blot analysis to characterize 1- to 4-mer variation
in a single A. thaliana ecotype (Depeiges et al., 1995). For
instance, DNA gel blot analysis showed that A and AG
repeats were the most abundant 1-mer and 2-mer, respec-
tively, while in the 3-mer class, AAG and ATC repeats were
highly abundant. All of this was seen in our estimates as
well. Furthermore, DNA gel blot analysis indicated that
AAG was more abundant than AAC repeat, which we also
observed as well, indicating that k-Seek is highly specific in
quantifying the type of k-mer repeat.

Arabidopsis thaliana telomere length variation
The tandem repeat with the second highest abundance in
the A. thaliana genome is the k-mer AAACCCT, which
corresponds to the canonical telomere repeat sequence in
plants [a reverse complement of the Arabidopsis TTTAGGG
telomere repeat, followed by tandem repetition] (Fajkus
et al., 2005; Watson and Riha, 2010). There is a wide range
in total copy numbers for the AAACCCT repeat, from 1,257
copies in Arabidopsis ecotype Ler-1 to 38,850 copies in
ecotype IP-Fel-2 (Supplemental Data Set 1), with a median
of 6,411 and a mean of 7,113.6± 161.1 (±standard error)
copies (Fig. 1B).

We compared telomere repeat copy numbers inferred
from k-Seek to directly measure telomere lengths in various
A. thaliana accessions using the terminal restriction
fragment (TRF) method (Fitzgerald et al., 1999). We experi-
mentally measured the telomere length by TRF in
424 A. thaliana accessions (Supplemental Figure 1) and
combined this dataset with data for 229 previously analyzed
accessions (Fulcher et al., 2015). In our total dataset of
653 A. thaliana accessions, designated as AraThaTRF, the
mean telomere lengths ranged from 1,065.2 bp in Hov1-10
to 11,787.2 bp in IP-Pro-0 (Supplemental Data Set 2), with a
median length of 3,533 bp and a mean length of
3,767.4± 50.1 bp (±standard error; Figure 1B).

A total of 112 accessions overlapped between the
AraThaKmer and AraThaTRF sample sets, and we found a
significant positive correlation in log10 telomere lengths
from the two methods (Figure 1C; Pearson’s r = 0.58 and
P = 2.3 � 10e–11, Spearman’s q = 0.55 and P = 1.9 � 10–10,
Kendall’s s = 0.39 and P = 8.8 � 10–10). We also looked at
genomic data from a second set of 201 accessions that were
sequenced using a different protocol from the AraThaKmer

set (Supplemental Data Set 1). This second genome dataset
had 140 accessions in common with AraThaTRF, and we
found a significant positive correlation in estimated telomere
lengths from the two methods as well (Pearson’s r = 0.33
and P = 8.5 � 10–5; Spearman’s q = 0.34 and P = 4.1 � 10–5;
Kendall’s s = 0.24 and P = 2.7 � 10–5). It should be noted
that the estimates of total telomere lengths are generally
higher using k-Seek compared to the direct TRF method,
which may be attributed to interstitial telomere repeats
that can be detected with the former method. Nevertheless,
our analysis revealed significant correlations in estimated
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telomere lengths from the k-Seek versus the TRF methods,
and the use of either estimate gave similar results in our
downstream analyses (see below).

GWAS mapping of telomere length variation
implicates telomerase
We investigated whether the natural variation in A. thaliana
telomere length has a genetic basis. We analyzed the

AraThaKmer and AraThaTRF sets separately by conducting
genome-wide association mapping of telomere length varia-
tion. We used the FarmCPU method for GWAS analysis,
which works well for identifying loci of complex traits that
may be confounded by population structure (Liu et al.,
2016). GWAS analysis revealed seven genomic regions
with single-nucleotide polymorphisms (SNPs) significantly
associated (after Bonferroni correction) with telomere length
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variation in the AraThaKmer set, and seven significant GWAS
hits in a separate analysis of the AraThaTRF data (Figure 2
and see Supplemental Table 1 for genome coordinates).

Of these, one SNP was detected in both analyses (P5 1
� 10–10) and is located on chromosome 5 at position
5,538,242. This SNP is found at the 30–UTR (untranslated re-
gion) of locus AT5G16850 (Figure 2), which corresponds to
the TERT gene. The TERT gene is crucial in maintaining telo-
mere length in A. thaliana (Fitzgerald et al., 1999) and other
eukaryotes (Autexier and Lue, 2006). Besides the overlapping
SNP at the TERT gene, the only other potentially overlap-
ping SNPs were two GWAS-significant SNPs on chromo-
some 3 position 5,136,799 from the AraThaKmer set and
position 5,295,758 from AraThaTRF set (�159 kbp apart).
However, none of the nonoverlapping 12 significant SNPs
from both GWAS studies were in proximity (within 200
kbp) to known telomere-regulating genes. Nonetheless, two
significant SNPs (chromosome 2 position 12,466,562 from
AraThaTRF dataset and chromosome 2 position 13,008,964
AraThaKmer dataset) from our GWAS analyses were also

located in a QTL region on chromosome 2 identified in a re-
combinant inbred line mapping study (Fulcher et al., 2015;
Supplemental Table 1).

Arabidopsis thaliana telomere length is associated
with flowering time variation
We examined if the telomere length distribution among
ecotypes had a geographical basis. We compared the telo-
mere lengths from the AraThaKmer and AraThaTRF sets to
each ecotype’s natural geolocation. We detected a significant
negative correlation between telomere length and latitude
for both the AraThaKmer (Spearman’s q = –0.182 and
P = 8.8 � 10–5) and AraThaTRF (Spearman’s q = –0.115 and
P = 0.022) datasets (Figure 3A), but for longitude, only the
AraThaKmer set had a significant negative correlation
[Spearman’s q = –0.165 and P = 3.8 � 10–4] (Figure 3B).

In A. thaliana, life-history traits are often associated
with geographic adaptation (Stinchcombe et al., 2004;
Montesinos-Navarro et al., 2012). We hypothesized that
telomere length polymorphisms occurred as a response to
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adaptation to specific life-history strategies. We tested
whether specific developmental traits associated with life
history were correlated with a variation in telomere length
by examining the developmental trait or telomere length
phenotype for each accession. We compared telomere
lengths from the AraThaKmer and AraThaTRF sets to seven
different developmental traits (see Figure 4A and
Supplemental Figure 2). The AraThaKmer set had significant
negative correlations with four traits: days to flowering at
10�C (Spearman’s q = –0.119, P5 0.009), days to flowering
at 16�C (Spearman’s q = –0.173, P5 1.6 � 10–4), cauline
leaf number (Spearman’s q = –0.125, P5 0.007), and rosette
leaf number (Spearman’s q = –0.152, P5 0.001), and positive
correlation with rosette branch number [Spearman’s
q = 0.111, P5 0.03] (Figure 4A). In the AraThaTRF set, the
same four traits had significant negative correlations with
telomere length: days to flowering at 10�C (Spearman’s q =
–0.223, P5 2 � 10–6), days to flowering at 16�C (Spearman’s
q = –0.210, P5 1 � 10–5), cauline leaf number (q = –0.178,
P5 8 � 10–4), and rosette leaf number [Spearman’s q = –
0.211, P5 0.0001] (Figure 4B; Supplemental Figure 2).
Telomere length explains between 0.3% and 0.8% of variation

in flowering time at 10�C and 2.36 and 2.46% at 16�C.
It should be noted that in A. thaliana, leaf number is devel-
opmentally correlated with flowering time.

To test whether these correlations were simply due to
population structure, we fit a multiple linear regression
model that included the first four axes of a principal com-
ponent analysis of the SNP variation as additive variables.
The results showed that in the AraThaKmer set, telomere
copy number was a significant negative predictor for the
traits days to flowering at 16�C (P5 0.024), cauline leaf
number (P5 0.034), and rosette leaf number (P5 0.003),
even when accounting for population structure. Also,
in the AraThaTRF set, telomere length was a significant
negative predictor for days to flowering at 10�C (P5 5 �
10–4), days to flowering at 16�C (P5 0.0015), and rosette
leaf number (P5 0.0076) after accounting for population
structure. Telomere length in this set accounts for �0.5%
of flowering time variation at 10�C, but this increases
to �2.4% at 16�C. Together, these results suggest that
telomere length is negatively associated with flowering
time in this annual species, such that plants with longer
telomeres flower earlier.
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Influence of A. thaliana genome size and telomere
or k-mer repeats on flowering time
A recent study showed that chromosomal features other
than telomeres, such as genome size, can affect flowering
time in plants (Bilinski et al., 2018). We investigated the
relationship between telomere length and genome size
in A. thaliana using data obtained through direct TRF
measurements. A previous flow cytometry study provided
genome size estimates (Long et al., 2013) for 139 accessions
in our AraThaTRF set, and these samples showed no signifi-
cant correlation between telomere length and genome size
(Supplemental Figure 3). We also compared the copy num-
ber of ribosomal DNA, which is responsible for the majority
of the A. thaliana genome size differences (Long et al.,
2013), and also found no significant correlations with
telomere length (Supplemental Figure 3). We did find a
significant positive correlation between flowering time and
genome size in this set (Spearman’s q = + 0.228,
P5 0.0042), as has been observed in maize (Bilinski et al.
2018); interestingly, this relationship is opposite that of the
correlation with telomere length.

We then examined other k-mer repeats and their relation-
ship with the telomere repeat and flowering time variation
in A. thaliana. Examining the computational predictions
from the AraThaKmer set, the top 10 most abundant k-mers
(Figure 1A) all had significant positive correlations with the

telomere repeat copy number (Supplemental Table 2).
Examining each k-mer and its association with flowering
time; however, there was no correlation with flowering time
at 10�C, while there was a positive correlation with flower-
ing time at 16�C for the k-mers A (q = 0.155, P5 6.8 �
10–4), AG (q = 0.134, P5 3.42 � 10–3), and AT (q = 0.178,
P5 9.77 � 10–5). Note that the correlations for those three
k-mers, like for genome size and ribosomal repeat lengths,
were opposite that between telomere repeat length and
flowering time. We then conducted a multiple linear regres-
sion of flowering time at 16�C with the k-mers A, AG, and
AT (which were computationally estimated for abundance
in this study) and the telomere repeat abundance in the
model. The results showed that the telomere repeat was a
significant negative predictor of flowering time at 16�C
(P5 5 � 10–7), even after accounting for the abundance of
the other three k-mers.

Evidence of selection within the genomic region
associated with telomere length
The nonrandom geographical distribution of telomere
lengths and the association with flowering time suggest that
the length variation may be the result of natural selection.
We conducted a selective sweep analysis focusing on the
SNP region (chromosome 5 and position 5,538,242) that
was associated with telomere length variation in GWAS
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analyses of both the AraThaKmer and AraThaTRF sets
(Figure 2).

Using the entire 1,001 A. thaliana genome dataset, we cal-
culated the integrated haplotype homozygosity score (iHS;
Voight et al., 2006) and x (Kim and Nielsen, 2004; Alachiotis
et al., 2012) statistics, and found no evidence of a selective
sweep across the entire population in this GWAS-significant
SNP region. We then divided the sample population based
on the allele status of the GWAS-significant SNP to examine
group-specific evidence of selective sweeps. Our GWAS
analysis indicated that individuals carrying the minor allele
(frequency = 17% in the 1001 A. thaliana genome dataset)
had longer telomeres than the others. We examined the
site-specific extended haplotype homozygosity statistics
(EHHS) between individuals carrying the major and minor
alleles at the GWAS-significant SNP region. The ratio of
EHHS between the populations (Rsb; Tang et al., 2007) sta-
tistic was elevated around the region encompassing the
GWAS-significant SNP region (Figure 5A), and the increased
EHHS occurred around the SNP for individuals carrying the
minor allele (Figure 5B). We then calculated the x statistic,
which detects selective sweeps based on patterns of linkage
disequilibrium (LD), and found that the GWAS-significant
SNP region was a significant outlier within individuals carry-
ing the minor SNP allele associated with longer telomeres,
but not within the individuals carrying the major allele asso-
ciated with shorter telomeres (Figure 5C). We also

conducted a bootstrap procedure to determine the signifi-
cance of this sweep signature. None of the bootstrap repli-
cates had a x statistic as large as what we observed for the
group of individuals carrying the minor SNP allele
(Supplemental Figure 4).

Flowering time is also negatively correlated with
telomere copy number in rice and maize
The association between telomere length and flowering time
was unexpected, but it suggested that individuals with
different telomere lengths had contrasting life-history strate-
gies. We investigated if this correlation is found outside
A. thaliana by examining the relationship between telomere
length and flowering time in O. sativa and Z. mays. For each
species, we analyzed whole-genome re-sequencing data from
previous studies that also reported flowering time data
(Flint-Garcia et al., 2005; Wang et al., 2018).

In rice (O. sativa) and maize (Z. mays), there was a wide
variation in telomere copy number, and like A. thaliana,
many of the differences appear to show population stratifi-
cation. In maize, data are available that incorporate
both whole-genome re-sequencing and flowering time
(Flint-Garcia et al., 2005), and we were able to computation-
ally estimate telomere copy numbers in this set of 277 maize
genotypes using k-Seek. An earlier study directly measured
telomere lengths in maize inbred lines (Burr et. al. 1992),
and 11 samples were common to both of these studies.
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Although the sample overlap was low, we did find that in
these 11 common genotypes, the correlation between the
computational versus direct measurement of telomere
length was very high (Spearman’s q 0.95, P5 1 � 10–16),
suggesting that our computational estimates also provide
good estimates of telomere length in this species.

Most maize varieties are genetically classified as either
from nonstiff-stalk (NSS) and stiff-stalk (SS) populations
from temperate regions (Liu et al., 2003) or from the tropi-
cal/subtropical (TS) population. Our analysis of the 277
maize cultivars showed that NSS varieties had significantly
higher telomere copy number than both SS and TS maize
cultivars [Mann–Whitney U (MWU) test, P = 0.0304 and
0.0065, respectively] (see Figure 60.

We also analyzed data for 2,952 rice varieties (Wang et al.,
2018). This species displayed the most significant differences
in telomere copy numbers between subpopulations, likely
due to deep population structure in rice (Huang et al., 2012;
Wang et al., 2018). Most rice varieties can be divided into
japonica or indica subspecies (Wang et al., 2018), which

possess a significant genetic and physiological differentiation
with each other (Zhao et al., 2011), so we analyzed each
subpopulation separately (Figure 6). In japonica, the temper-
ate japonica (GJtmp) group had significantly higher telomere
repeat copy numbers than both subtropical (GJsubtrp) and
tropical japonica (GJtrp; MWU test, P = 0.0051 and 1.34 �
10–10, respectively). In indica rice, the subpopulation XI-1A
(from East Asia) had significantly higher telomere copy num-
bers compared to subpopulation XI-1B (modern varieties of
diverse origin), XI-2 (from South Asia), and XI-3 (from
Southeast Asia; MWU test, P = 0.0046, 2.38 � 10–20, and
1.83 � 10–18, respectively; see Figure 6).

Notably, in both rice and maize, the subpopulations with
the highest telomere copy numbers (temperate japonica
and NSS maize) were from temperate regions. It should be
noted that in maize, the SS population is also temperate
but has shorter telomeres, which may reflect the distinct re-
cent breeding history of SS inbred maize.

Like in A. thaliana, we observed a significant negative
correlation between telomere copy number and flowering
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time in rice (q = –0.084, P5 9.3 � 10–5; see Figure 6). This
correlation is even more pronounced within each rice sub-
species (ssp. japonica, q = –0.255, P5 5.3 � 10–9 and ssp.
indica, q = –0.259, P5 2.9 � 10–15). In maize, we obtained
previously measured flowering time data that were collected
in five field locations in the USA and over a 3-year period in
some locations; there were data for a total of nine fields/sea-
sons (Zhao et al., 2006). In seven cases, there were significant
negative correlations between telomere repeat copy number
and flowering time (q = –0.123 to –0.169, P5 0.008 to
0.045; see Figure 6 for one example), one was marginally
nonsignificant (q = –0.130, P5 0.057), and one still
appeared negative but was nonsignificant (q = –0.057,
P5 0.43; see Supplemental Table 3).

As in A. thaliana, telomere length explains a relatively
small fraction of flowering time variation in these plants: a
mean of 2.64% of the variation in maize (based on data
from seven fields/seasons; see Supplemental Table 3), 5.39%
of the variation for japonica, and 3.80% of the variation for
indica rice. Despite the relatively low levels of flowering time
variation explained, these correlations with telomere length
are significant. To test whether these correlations were due
simply to population structure, we fit a multiple linear re-
gression model that included the first four axes of a princi-
pal component analysis of the SNP variation as additive
variables. Similar to the case in A. thaliana, for both rice and
maize, telomere length had a significantly negative effect on
flowering time, even after accounting for population stratifi-
cation (P5 0.02 for rice and P5 0.033 for maize).

GWAS of telomere repeat copy number variation in rice
and maize using FarmCPU showed significant SNP markers
in the japonica rice, indica rice, and maize populations
(Supplemental Figure 5). There were 16, 11, and 9 SNPs in
indica rice, japonica rice, and maize, respectively, that were
significant after Bonferroni correction (Supplemental Table
4). We identified 19 rice and maize orthologs of known
telomere-regulating genes (see Supplemental Table 5 for
ortholog list) and compared their genomic positions to the
GWAS-significant SNP markers; none of the significant SNPs
were in close proximity to these telomere-regulating genes
(in japonica rice, the closest GWAS-significant SNP was on
chromosome 12 position 11,760,516 and near the gene
TERT [5 395 kbp]; in maize, the closest GWAS-significant
SNP was on chromosome 8 position 166,932,200 near the
gene paralogs RPL5A/RPL5B [53.2 Mbp]).

No overlap of GWAS peaks for telomere length and
flowering time
We examined whether telomere-regulating genes were in
fact previously unrecognized flowering time QTLs, and vice
versa. Using both AraThaKmer and AraThaTRF individuals, we
conducted GWAS of flowering time and compared the
results to our GWAS results for telomere copy number (see
Supplemental Tables 1 and 6 for significant SNPs from each
GWAS analysis). We demarcated a 100-kb window centered
on each significant telomere length SNP and examined

whether any significant flowering time SNP was found
within this window. No GWAS-significant SNPs were directly
overlapping between the two traits (Figure 7 and see
Supplemental Figure 6 for AraThaKmer set results). There
was, however, a GWAS-significant SNP for telomere copy
number on chromosome 5 position 15,389,625 in the
AraThaKmer set and a GWAS-significant SNP for flowering
time on chromosome 5 position 15,322,950 in the
AraThaTRF set, which are �67 kb apart.

We also examined the genetic architecture underlying
flowering time variation in rice and maize. Like in A. thali-
ana, we did not find any directly overlapping
GWAS-significant SNP positions for telomere length and
flowering time variation (see Supplemental Tables 4 and 7).
The distances between the closest GWAS-significant SNP for
telomere length and flowering time were �434.2 kb for rice
and �26 Mb for maize.

Discussion
The links between telomere length and organismal life-
history traits are tantalizing, especially since telomeres are
linked to cellular senescence, aging, and disease in humans.
Despite its central role in chromosomal stability, the drivers
of telomere length variation and their phenotypic conse-
quences remain unclear. This is particularly relevant for
plants, where telomere length variation is not easily con-
nected to aging and senescence, as observed in animals
(Watson and Riha, 2011). In our analysis, we found that nat-
ural telomere length variation in three annual plant species
is related to flowering time, one of the most crucial life-
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history traits of plants. We found that in Arabidopsis, rice,
and maize, individuals that had longer telomeres flowered
earlier; finding this correlation in three distinct species from
both dicots and monocots suggests that this relationship
may be widespread. Indeed, we also observed a negative cor-
relation between flowering time and telomere length in the
polyploid plant rapeseed (Brassica napus), although this rela-
tionship was not significant in this species.

It should be noted that only a small amount of variation
in flowering time is explained by telomere length in the
three plant species. Telomere length accounts for approxi-
mately 0.5%–2.4% of flowering time variation in Arabidopsis
and 3%–6% in maize and rice. The low fraction of variation
in life-history traits explained by telomere length is perhaps
not surprising: flowering time, for example, is a complex
quantitative trait whose variation is largely explained by nu-
merous major genes in the flowering time pathway (Salomé
et al., 2011). What remains intriguing is that, despite the
complex genetic architecture underlying flowering time vari-
ation, the effects of telomere length on this life-history trait
were still observed, even after correcting for population
structure accounting for local genetic differences. Moreover,
this level of correlation seems to still be sufficiently large
that it can be acted upon by natural selection, providing a
key evolutionary link between telomeres and plant ecology
and life history.

Moreover, while the levels of flowering time variation
explained by telomere lengths may be low, similar levels are
also observed for correlations of telomere length with life-
span traits in animals. For example, the variation explained
between telomere length and mortality traits in dogs ranges
from 0.62% to 8.8% (Fick et al., 2012). In humans, three
studies showed that the percentage of telomere length vari-
ation that can be explained by age ranges from 6.8% to 16%
(Njajou et al., 2007; Fitzpatrick et al., 2007; Weischer et al.,
2014), although one early study had it as high as 50%
(Slagboom et al., 1994); the latter appears to be an outlier.
These results indicate that in both plants and animals, the
amounts of variation in life-history traits explained by telo-
mere length (or vice versa) may be low but are nevertheless
significant.

The precise molecular mechanisms behind the correlation
between telomere length and flowering time remain un-
known, but we can suggest several possibilities. First, genes
that control telomere length may have pleiotropic effects
and also affect flowering time (or vice versa). Our analysis
did not find any overlap between significant GWAS peaks
for these two traits, but this does not rule out the possibility
of multiple pleiotropic genes with small effects. Second, early
flowering and rapid reproduction may somehow affect chro-
mosome stability (precisely how is unclear), and so longer
telomeres are adaptive in early flowering lines. A third possi-
bility is that longer telomeres may be adaptive due to some
other selection pressure, but given the energy expenditure
for telomere maintenance, this may result in a trade-off that
leads to early flowering. Finally, perhaps greater telomerase

activity is adaptive in plants with rapid developmental rates
and early flowering, and the longer telomeres in early flower-
ing lines are merely an indication of higher levels of telome-
rase activity. In this latter case, it should be noted that in
maize, for example, faster rates of cell differentiation in the
shoot apical meristem are observed in plants with earlier
flowering times (Bilinski et al., 2018; Leiboff et al., 2015), and
telomerase is most active in differentiating tissues such as
the meristem (Fitzgerald et al., 1996; Riha et al., 1998). All of
these theories will need to be experimentally tested in the
future.

In support of the hypothesis that the negative correlation
between telomere length and flowering time may indeed be
driven by adaptive evolution, we should note that there is
evidence for a selective sweep at the A. thaliana TERT geno-
mic region. Adaptation may also explain the significant lati-
tudinal cline of telomere length variation in Arabidopsis,
and we also found that longer telomeres are associated with
other aspects of the spring cycling life-history strategy of
this ruderal species, such as germination in response to cold.
Moreover, longer telomeres are found in temperate-adapted
varieties of rice (temperate japonica) and maize (non-stiff-
stalk and stiff-stalk maize), which also flower significantly
earlier in their growing seasons compared to TS varieties.

While we can advance these different hypotheses for
the observed correlations, other explanations are possible.
More work is required to understand why such correlations
exist in plants. What is apparent is that the relationship of
telomere length to life history is different in plants com-
pared to other organisms. In mammals and other eukaryotic
systems, shorter telomeres are generally associated with ag-
ing, in part because of the association of telomere shorten-
ing with cellular senescence (Urquidi et al., 2000). That
clearly is not the case with the annual plant species we have
studied. It has also been suggested that shorter telomeres
are found in organisms with a faster “pace of life,” since the
investment in somatic maintenance in such organisms is
thought to be reduced to save energy for reproduction
(Giraudeau et al., 2019). Again, our results suggest that this
does not appear to be the case for these annual plants, as
early flowering presumably due to faster developmental
rates is associated with longer (and not shorter) telomeres.

Interestingly, the genetic architecture of telomere length
variation is distinct in the three species we analyzed. In
maize, an early QTL study examined telomere length varia-
tion and identified three loci associated with this trait (Burr
et al., 1992), only one of which (a QTL on chromosome 4)
may overlap with one of our nine GWAS hits. Natural telo-
mere length variation has been more extensively studied in
the model plant A. thaliana, and our GWAS found that
three of our significant SNPs overlap with two previously
identified telomere length QTL regions (Fulcher et al., 2015).
Interestingly, genes previously associated with telomere set
point regulation in Arabidopsis, including NOP2A, RPL5A,
and RPL5B (Abdulkina et al., 2019), did not appear in our

1128 | THE PLANT CELL 2021: 33: 1118–1134 J. Y. Choi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/33/4/1118/6122721 by guest on 29 July 2021



GWAS, perhaps due to differences in the mapping popula-
tions employed or their allele frequency in the population.

Our GWAS mapping, however, does span a key telomere-
regulating gene in A. thaliana: the telomerase gene TERT.
The A. thaliana TERT gene is involved in telomere elonga-
tion (Riha et al., 2001), and this locus also overlapped with a
large QTL region for telomere length identified from a previ-
ous recombinant inbred line mapping study (Fulcher et al.,
2015). TERT has also been identified in a human GWAS
mapping study showing an association with leukocyte telo-
mere length variation (Codd et al., 2013), pointing to cross-
kingdom functional conservation. Determining whether it is
indeed genetic variation at TERT that controls natural differ-
ences in telomere length variation in A. thaliana awaits fu-
ture fine-mapping and molecular genetic investigations.

The lack of overlap between GWAS-significant SNPs across
the three plant species suggests a divergence in the genetic
architecture underlying telomere length regulation. However,
there are caveats to our results. FarmCPU is computationally
intensive. To reduce the computational burden in analyzing
a large number of SNPs, we used LD pruned dataset for the
GWAS. While this was suitable for A. thaliana and its small
genome, for rice and maize, the LD pruning may have
resulted in a coarse genome-wide landscape of the variation.
However, it is worth noting that in maize, even with a re-
duced representation SNP set, the FarmCPU algorithm was
able to detect SNPs in known flowering time-regulating
genes, albeit by using a sample size that is 10-fold greater
than our study (Liu et al., 2016). Hence, perhaps at least for
our maize GWAS results, the analysis was underpowered
due to the low sample size.

Our study complements recent work in identifying the
effects of genome size and structure on life-history traits such
as flowering time (Meagher and Vassiliadis, 2005). In maize,
for example, genome size is positively correlated with flower-
ing time (Jian et al., 2017), and changes in repetitive DNA
sequences are associated with altitudinal adaptation (Bilinski
et al., 2018). The negative correlation between genome size,
repetitive DNA content, and cellular growth rate has been ad-
vanced as a plausible explanation for this phenomenon
(Tenaillon et al., 2016; Bilinski et al., 2018). These studies, as
well as our results on telomere variation, suggest that a varia-
tion in life-history strategy can indirectly influence chromo-
some and genome structure via selection. This opens up
future areas of inquiry, including determining how widespread
this phenomenon is, the relationship between telomere length
and cell differentiation rate in plants, details of any selective
advantage of telomere length in plant species with different
life histories, and the precise molecular genetic mechanisms
underlying telomere length polymorphisms in plant species.

Materials and methods

Plant materials and growth conditions
Seeds for the set of A. thaliana genotypes from the 1,001
Genome Project were purchased from ABRC (CS78942).
Additional lines were obtained from the laboratory

collection of TEJ. Seeds were sown into a mixture of three
parts Promix BX mycorrhizae soil, one part Profile Field and
Fairway calcined clay, and one part Turface medium stabi-
lizer. Plants were grown in a greenhouse at UT Austin under
16/8-h light/dark (150 mmol light levels using Phantom Pro
Double-ended 1,000-watt high-pressure sodium bulbs.), 21/
18�C (day/night) conditions. Plant tissue for analysis was
collected at the 5-week stage.

TRF analysis of telomere length analysis
Genomic DNA was extracted from individual whole plants
(n = 1–3) and digested with the restriction enzyme Tru1I
(Fermentas, Hanover, MD, USA) as previously described
(Fitzgerald et al., 1999). [32P] 50-end-labeled or 50-DIG-
(T3AG3)4 oligonucleotides were used as probes (Nigmatullina
et al., 2016; Abdulkina et al., 2019). Radioactive signals were
scanned with a Pharos FX Plus Molecular Imager (Bio-Rad),
and nonradioactive signals were scanned with a GBox-F3
Imager (Syngene). Images were visualized with Quantity One
v.4.6.5 software (Bio-Rad), and mean telomere length values
(mean TRF used for GWAS) were calculated using the
TeloTool program (Göhring et al., 2014), as described previ-
ously (Abdulkina et al., 2019). Overall, we measured telomere
length in 424 A. thaliana accessions. Since our TRF method
is identical to the one used in Fulcher et al. (2015), we added
data for 229 accessions analyzed in their study to obtain our
final dataset of 653 genotypes.

Analyzed genome sequences
We obtained the whole-genome re-sequencing data for A.
thaliana, O. sativa, and Z. mays from previous published
studies.

Arabidopsis thaliana: Genome sequences were obtained
from the 1001 A. thaliana Genome Consortium (Alonso-
Blanco et al., 2016) and are available at the NCBI SRA
SRP056687. We grouped the 1,135 samples with the same
genome sequencing protocols and analyzed the two most
highly represented groups. This included the first group (des-
ignated as AraThaKmer) with 483 individuals prepared using
leaf tissue and sequenced with 2� 100-bp read length on the
Illumina HiSeq 2000 platform. The second group consists of
201 individuals prepared using leaf tissue and sequenced as
2� 101-bp read length on the Illumina HiSeq 2000 platform.

Oryza sativa: Genome sequencing data from Wang et al.
(2018) were obtained at NCBI SRA PRJEB6180. All 3,000
samples were prepared from leaf tissue and sequenced as
2� 83 bps using Illumina HiSeq 2000. Only samples with
greater than 5� genome coverage were used.

Zea mays: We analyzed the “Buckler-Goodman 282” panel
of Flint-Garcia et al. (2005), which captures the genetic
diversity of maize. We analyzed the most recent sequencing
batch that re-sequenced the panel to a higher depth using
2� 150 bp on the Illumina HiSeq 10X platform (Bukowski
et al., 2018). The data were obtained from the NCBI SRA
PRJNA389800.
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Identifying and quantifying tandem repeats
Sequencing reads were subjected to quality control using
BBTools (https://jgi.doe.gov/data-and-tools/bbtools/). We
used the bbduk.sh script version 37.66 using parameters
minlen = 25 qtrim=rl trimq = 10 ktrim=r k = 25 mink = 11
hdist = 1 tpe tbo to trim sequencing adapters and low-
quality sequences.

We used k-Seek to quantify k-mers and to identify the to-
tal copy number for a tandemly repeating k-mer in a sample
of an unmapped genome sequencing library (Wei et al.,
2014, 2018). k-Seek requires the minimum repeating length
to be 50 bp to avoid counting small microsatellites that are
scattered across the genome. We note that because k-Seek
is optimized to analyze “short” Illumina sequencing reads
(5150 bp), we will inevitably miss the characterization of
large k-mer sequence-based satellite repeats (i.e. centromeric
or ribosomal DNA repeats).

PCR-based library preparation is known to have a bias in
underrepresenting high and low GC regions of the genome
(Benjamini and Speed, 2012). To account for this bias,
we implemented the method of Flynn et al., (2017) to
correct for differences in GC content. Reads were mapped
against the reference genome to first calculate the mean
insert size using bamPEFragmentSize from deeptools version
3.3.0 package (Ramı́rez et al., 2016). The insert size was used
to calculate the GC content of a given position in the ge-
nome, which was defined as the proportion of G or C bases
of a given position plus the downstream fragment length of
the library (Benjamini and Speed, 2012). The alignment was
then used to calculate the average coverage of each GC con-
tent. We used bwa-mem version 0.7.16a-r1181 (Li, 2013)
with default parameters to align paired end reads to the
reference genome. The average coverage per GC content
was then used to calculate the correction factor of
Benjamini and Speed (2012) and applied to k-mer counts.
We used scripts from Flynn et al., (2017; https://github.com/
jmf422/Daphnia-MA-lines/tree/master/GC_correction) that
implement the entire process.

For A. thaliana re-sequencing data, we used the reference
genome TAIR10 from The Arabidopsis Information
Resource. The genome sequences for O. sativa and Z. mays,
however, were not ideal for implementing the GC content
correction method. For O. sativa, samples were sequenced
across multiple runs, suggesting that any differences in
the sequencing run should also be implemented in the
correction. For Z. mays, the genome coverage was relatively
low (on average �5�), indicating that a coverage-based
method of correction would not be ideal. Hence, for these
two species, we only analyzed the telomere repeat, and for
each sample, its telomere count was divided by average
genome-wide coverage to account for differences in
sequencing coverage between samples. The per-sample
average coverage was obtained from Supplementary Data 2
of Wang et al., (2018) for O. sativa and was calculated using
bedtools version 2.25.0 (Quinlan and Hall, 2010) genomecov
program for Z. mays.

Genome-wide association study
For A. thaliana, the population VCF file was downloaded
from the 1001 Genomes Project website (https://
1001genomes.org/). For O. sativa, the population VCF was
downloaded from the 3,000 Rice Genome Projects’ snp-seek
website (https://snp-seek.irri.org/; Mansueto et al., 2017). For
Z. mays, the population VCF was downloaded from the
Gigascience database (http://dx.doi.org/10.5524/100339;
Bukowski et al., 2018).

The SNP files were initially filtered to exclude polymorphic
sites that had 410% of the individuals with a missing geno-
type and sites with 55% minor allele frequency. The VCF
files were converted to PLINK format using vcftools version
0.1.15 (Danecek et al., 2011), and the program plink ver. 1.9
(Chang et al., 2015) was used with the parameter –indep-
pairwise 100 5 0.5, which scans the file in 100 variant count
windows while shifting the window in 5 variants and LD
pruning pairs of variants that have r2 40.5. In the end, we
used 173,688 SNPs for AraThaKmer set, 153,845 SNPs
AraThaTRF set, 585,026 SNPs for indica rice, 370,052 SNPs for
japonica rice, and 3,048,120 SNPs in maize.

The LD-pruned PLINK file was converted to HAPMAP for-
mat for the GWAS using GAPIT version 2 (Tang et al.,
2016). We took the log10 of the telomere lengths (corre-
sponding to telomere repeat copy number from k-Seek-
based estimate or the telomere fragment length from the
TRF-based estimate) to normalize the distribution. For
GWAS mapping, we used FarmCPU (Liu et al., 2016), which
is a mixed linear model (MLM) incorporating population
structure and kinship but is robust to false-positive and
false-negative associations compared to other MLM GWAS
algorithms. We used four principal components to model
the underlying population structure.

Orthologs of A. thaliana telomere-regulating genes were
found in the rice and maize gene annotation using
Orthofinder ver 2.3.12 (Emms and Kelly, 2019, 2015).

Selective sweep analysis of A. thaliana
Evidence of selective sweep was examined using the iHS
(Voight et al., 2006), Rsb (Tang et al., 2007) and OmegaPlus
methods (Alachiotis et al., 2012) with SNPs extracted from
chromosome 5. The SNP files that were filtered to exclude
polymorphic sites that had 410% of the individuals with a
missing genotype, and sites with 55% minor allele fre-
quency were used. Missing genotype imputation and SNP
phasing were conducted with Beagle version 4.1 (Browning
and Browning, 2016).

To calculate the iHS and Rsb statistics, we used the
filtered and phased VCF file with the R program (R Core
Team, 2016) rehh package (Gautier and Vitalis, 2012).
OmegaPlus statistics were calculated with OmegaPlus ver-
sion 3.0.3 with -grid 2697 so that each grid would
correspond to roughly 10,000 bp, and additional parameters
-minwin 5000 -maxwin 3,000,000 -no-singletons. A bootstrap
procedure was conducted to determine the significance of
the OmegaPlus statistics. We randomly sampled individuals
matching the sample size of the individuals carrying the
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minor allele at the GWAS-significant region on chromosome
5. OmegaPlus statistics were then calculated for this ran-
domized group, and this procedure was repeated 200 times
to generate a bootstrap distribution.

Plant phenotype analysis
For A. thaliana, various developmental traits were obtained
from Arapheno (https://arapheno.1001genomes.org/; Seren
et al., 2017) with phenotype names FT10 (days to flowering
at 10�C), FT16 (days to flowering at 16�C), CL (cauline axil-
lary branch number), RL (leaf number), length (stem length),
RBN (primary branch number), and diameter (flower diame-
ter). Genome size and ribosomal DNA size estimates were
taken from the github repository (https://github.com/
Gregor-Mendel-Institute/swedish-genomes/tree/master/files)
for the original study (Long et al., 2013).

For rice, we obtained flowering time data measured as part
of the 3000 Rice Genome Project (Sanciangco et al., 2018;
Wang et al., 2018), which was measured as number of days
at which 80% of the plants were fully headed (code HDG_
80HEAD). The data are available from https://doi.org/10.7910/
DVN/HGRSJG. For maize, we obtained phenotype data from
the Buckler-Goodman association panel. The phenotype file
(traitMatrix_maize282NAM_v15-130212.txt) was downloaded
from Panzea (https://www.panzea.org/phenotypes), and we
only analyzed the days to silk trait (code GDDDaystoSilk).

For each plant genotype, the phenotypes we obtained
were a single representative value that was a product of
summarizing the phenotype values from multiple replicates.
The replicate information, however, was not readily available;
hence, we considered each phenotype value to be an overall
representation of the genotype.

Association between the telomere length and plant
phenotypes were conducted in R. Telomere lengths were
log10-converted before the linear regression modeling.
The multiple linear regression analysis was conducted using
the lm function, and population structure information was
obtained from the four principal components that were
used in the GWAS analysis.

Accession numbers
Sequence data from this article can be found in the
GenBank/EMBL libraries under the following accession num-
bers: PRJNA273563 for A. thaliana, PRJNA389800 for Z.
mays, and PRJEB6180 for O. sativa. The genome-wide K-mer
abundance estimation and SNP file used for GWAS for A.
thaliana, rice, and maize are available from Zenodo data re-
pository (https://doi.org/10.5281/zenodo.4295944).
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The following materials are available in the online version of
this article.

Supplemental Figure 1. Arabidopsis thaliana accessions
display different telomere length set points.

Supplemental Figure 2. Scatter plots of A. thaliana phe-
notypes including cauline leaf number, diameter of rosette,

rosette branch number, and length of flowering stem versus
telomere copy number or terminal fragment length.

Supplemental Figure 3. Scatter plots of A. thaliana ge-
nome size and ribosomal DNA copy number versus terminal
fragment length.

Supplemental Figure 4. Genome-wide x statistic from
200 bootstrap groups.

Supplemental Figure 5. GWAS results for telomere re-
peat copy number in rice and maize.

Supplemental Figure 6. GWAS results for telomere copy
number and days to flowering in A. thaliana.

Supplemental Table 1. GWAS-significant SNPs for telo-
mere repeat copy number in the AraThaKmer set or telomere
length in the AraThaTRF set.

Supplemental Table 2. Top 10 most abundant k-mer
repeats and association with the telomere repeat or flower-
ing time in A. thaliana.

Supplemental Table 3. Correlation between maize telo-
mere repeat copy number and days to silk measured in 9
different environments.

Supplemental Table 4. GWAS-significant SNPs for telo-
mere repeat copy number in rice and maize.

Supplemental Table 5. Orthologs of A. thaliana
telomere-regulating genes in rice and maize.
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